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N U M E R I C A L  S T U D Y  ON N A T U R A L  CONVECTION IN T H R E E  
- D I M E N S I O N A L  R E C T A N G U L A R  E N C L O S U R E S  

Taik Sik Lee*, Gi Hun Son* and Joon Sik Lee* 

(Received March 18, 1989) 

Natural convection in three-dimensional rectangular enclosures has been analyzed numerically using a strongly stabilized 
QUICK(Quadratic Upstream Interpolation for Convective Kinematics) scheme. Computations are performed for the different cases 
of temperature boundary conditions to see the effect of temperature disturbance on three-dimensional motion. The effect of the 
Rayleigh number is mainly investigated and two dimensional approximation limit is examined as well. The results show that the 
temperature disturbance imposed on the end wall reinforces the axial flow and magnifies the three-dimensional effect. 
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NOMENCLATURE 
A r Y-directional aspect ratio 
Az Z-directional aspect ratio 
c Specific heat 
g Gravitational acceleration 
k Thermal conductivity 
L Length of the box in the X direction 
Nu~ Local Nusselt number 
Nm, Mean Nusselt number 
P Pressure 
Pr Prandtl number 
T Temperature 
Th Temperature of the hot wall 
Tc Temperature of the cold wall 
To Reference temperature 
Qx Volume flow rate in the X direction 
Qr Volume flow rate in the Y direction 
Ra Rayleigh number 
U, V, W Velocity components 
V Velocity vector 
X,  Y,  Z Coordinates 
a Thermal diffusivity 
/" Diffusion coefficient 
0 Dimensionless temperature 
p Fluid density 
r General dependent variable 

Subscripts 
E, EE, P, W, WW : Grid points(Fig. 2) 
b, e, m, n, s, t, w : Control surface(Fig. 2) 

1. INTRODUCTION 

For many years a lot of attention has been paid to the 
problems of natural convection in enclosures. However, the 
limitations of mathematical tools and experimental tech- 

*Department of Mechanical Engineering, Seoul National Univer- 
sity, Seonl 151-742, Korea 

niques restrict investigators within the approximation of a 
two-dimensional model even though fluid motion is three- 
dimensional in nature. Recently, the development of numeri- 
cal methods for the solutions of the three-dimensional flow 
with high accuracy and strong stability extricates the 
explorers from the hurdle of the l:wo-dimensional limitation. 

Mallinson and de Vahl Davis(1977) investigated three- 
dimensional effects induced by velocity disturbance due to 
the existence of the end walls. They show that the three- 
dimensional motion is due to the interaction of the rotating 
flow with the stationary walls together with a contribution 
arising from buoyancy forces generated by longitudinal tem- 
perature gradients. Morrison and Tran(1977) conducted 
experimental study on the flow structure generated by heat 
transfer in a vertical rectangular cavity with aspect ratio of 
5. The measurements show that the end wall conduction 
affects the whole flow structure and thus may introduce 
significant deviations from the commonly assumed two- 
dimensional conditions in the central section. Mallinson(1987) 
investigated numerically the three-dimensional effects using 
the Hele Shaw model. The results for side heating and 
heating from below overpredict the heat transfer. 

In this study, three different cases described below, have 
been considered to account for the three-dimensional effect 
due to a temperature disturbance. 

[Case I J the right wall is at a higher temperature than 
that of the left wall, all other walls being adiabatic 

{Case IIJ the right wall is at a higher temperature than 
that of the left wall and the front and rear walls have a linear 
temperature profile in the horizontal direction, the top and 
bottom walls being adiabatic 

[Case III] the front and rear walls have a linear tempera- 
ture distribution in the horizontal direction, all other walls 
being adiabatic. 
The orientations of the walls are given in Fig. 1. 

QUICK scheme is employed in the calculation and to 
improve the convergence of this scheme, some terms appear- 
ing in the finite difference equation are rearranged in a 
manner to obey Patankar 's  rule(1980). 

Calculations are performed for the three different Rayleigh 
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Fig. 1 Configuration and coordinate system 

numbers of 10', 10 ~ and 10 ~ and in each case the streamline, 
velocity profile and Nusselt number variation are presented. 

2 .  A N A L Y S I S  

2.1 M a t h e m a t i c a l  M o d e l  
The configuration and coordinate system of the problem is 

shown in Fig. 1, the length being nondimensionalized by L, 
the size of the box in the X-direction. By introducing scale 
factors, a / L  and pa2. /L  2, for velocity and pressure respective- 
ly, and defining dimensionless temperature, O = ( T  - To)/  
( T o -  T~), where To is the initial temperature of the fluid in 
the enclosure, it follows that the governing equations for 
steady Boussinesq convection become 

17. V=0, (1) 
~7 . ( V V )  = - P' P + P r  ~zz V + RaPrOg,  (2) 
t r"  (VO) = P'20, (3) 

where Ra  and P r  are Rayleigh and Prandtl numbers respec- 
tively. 

The velocity boundary conditions at the walls are given as 
V = 0. For temperature, lr 0- n = 0 at the horizontal walls for 

all cases, but those of other walls are different in the three 
cases. With the assumption of symmetry about the Z = A z / 2  
plane, the calculation domain can be confined to the half of 
the box, and the boundary conditions tabulated in Table 1 can 
be applied. 

T a b l e  1 Temperature boundary conditions for each case 

Case I Case II Case III 

b'ront wall Adiabatic 0 = X -  0.5 0 = X - 0.5 

Left wall 0 = - 0.5 0 = - 0.5 Adiabatic 

~ight wall 0=0 .5  0=0 .5  Adiabatic 

T 

WW 

E 

/ 
/ 

I 

e / AY 

1 e l .  ` /  
h 

~ -  - , .  ~ - - - - - Y - - - - :  - - 4  
/ /  . /  I / 

I / /  "W 

/ I 
/ /  I 

w 
N 

Bx~,.,. Bx~ axe Bx~ 

, Bx~  Bx,~ B x ~  Bx~ 

W w p e E 

AX 

Fig. 2 Control volume 
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II 

EE 

[ aS ~ ax ~_[ a2S ) ax ~ (7) 

2.2 N u m e r i c a l  M e t h o d  
Introducing the general variable r and the diffusion coeffi- 

cient / ' ,  the governing equation in a steady one-dimensional 
problem is 

and 

(- ff~X )e = sE - sP 
3x  " (8) 

a ar _ x ( p v s - r x ) - 0 .  (4) 

Integration of Eq. (4) over the uniform control volume shown 
in Fig. 2 yields 

0r pUS - _ o  t'-b~-]w- . (5) 

Leonard(1979) suggested the following quadratic upstream 
interpolation of convective variables to remove false diffu- 
sion problem of upwind scheme. 

_~ +{ ar ax~_{ a~S ~ ax ~ 
Ue>0" we-we \ f f ~ - ] p ~ - - ~ \ ~ - X q - ] p  ~ , (6) 

where 

ar _ (9) 
26x  28x  ' 

( -a2r - ( 1 o )  

r162  r162  
OX ~ 1 ~ -  3x  ~ 3x  ~ 

However, it has been found that the direct application of 
Leonard's QUICK scheme involves convergence problem 
especially for the high Peclet numbers. Therefore, in this 
study, the terms appearing in finite difference equation are 
rearranged to meet Patankar 's rule. 

By integration of Eq. (4) over the control volume (X~< X 
< X~, Y~< Y< Yn, Z~< Z <  Zt), the following equation may 
be obtained. 



= A~ ( r  r + A w ( r  r  - B e  
=Ae ,  ( r  Ce) + A  w, ( r  Cw) - B ~ ,  

+ A ~ ( r  r + A w~(r r  - B ~ ,  (11) 

(12) 

where Ae, A w, and Be are as follows. 
A e = A ~ , + A e ,  Aw=Aw,+Aw~,  B~-B~,+'Be~. 
Each term in the integrand in Eq. (11) may be expressed 

separately as 

fzz' f Y ' ( p U ~  " dYdZ  

= A e , ( r  r + A w , ( r 1 6 2  

f/V ~'(oUr - ~  3r ~ d ~ Z  

(13) 

(14) 

/ -  
D e f i n i n g  Fe=(pU)eAYAZ,  and D , = ~ A Y A Z ,  and 

introducing QUICK scheme to Eq. (12) yields 

= [Fe, 0] {r ( r  Cw) (G - G)  
+ ( r  CD ( -  G -  C,) } 
+ [ - F ~ ,  0 ] { - r  ( r  r ( - ~ -  C,~) 
+ ( r 1 6 2 1 6 2  

= [ - F ~ ,  0] ( 1 - G -  C,~) ( r  bE) 
+ [bS, o] (C, - G )  (r  6 .)  
+ [Fe, 0] { r  (G  + C.) ( b e -  Ce) } 
+[--fie, O] {-q~P + ( -  C,o + C,2) ( r r } 

=A~, (r CD + A w , ( r 1 6 2  +BE,. 

(15) 

Now the coefficients Ae, and A w, are rearranged to have 
positive values as follows : 

AE,=[-F~ ,  0J ( 1 -  C~- C1,) +D~, 
Aw,=[F. ,  0] (C~- G ) ,  
B~, = [Fe, 0] { r  ( G  + C.) ( r  Ce) } 

- [ - F e ,  0] { r  (C,0 - C,~) ( r  r  }, 

w x 

where the coefficients C's are : 

3Xe3Xem 8Xw3Xem 
CI= 3x~(3Xw+3X,)' C.= 3xe(Sx~+3x. ) '  

3Xem 2 3Xem 2 
C~= 3x~(3xw+3xD' C,= ~x~(3x~+3x~)' 

3x~3x~ , Go = 3x~+3x~p 
C~= 3x~(3x~+3x~) 3x.e(3x~+3x~) '  

~Xep 2 ~Xep 2 

Cll  = 3IV ((~Xe -~ 3Xee) ' C12 = 3Xee ((~Xe + (~Xee) ~ 

Similary following equations are obtained corresponding to 

Eq. (13). 

Ae, = [ - F ~ ,  0] (D,o - D ~ ) ,  
Aw,= [ F~, O] (1 -  D~-D. )  + Dw, (16) 
Be~ = [ - F ~ ,  0] { r  (Dg+Du) ( r 1 6 2  

+ [F~, 0] { - b e -  (D~-193) ( r162  }, 

where the coefficients D's are : 

3Xw3Xwm 3 X ~ 3 X ~  
DI = 3x~(6x~w+3x~) '  D2 = 8Xw(3X~w+3X~)' 

~Xwm 2 ~Xwm 2 
D3 = 3xww(3xw~+3x~)' D. = 3 x ~ ( 3 x ~ + ~ x ~ ) '  

3x,Sxwp Dlo = 3xw3xwp 
D9 = 8xw (3xw+ (~Xe) ' ~Xe ((~Xw+ 3Xe) ' 

3xwp 2 3xwp 2 
Du = 3xw(~xw+3Xe) ' D,~= SXe(3Xw+3Xe) " 

At the boundary the modified gradient with second order 
accuracy is employed in the form of 

(3r ~ _ CP-r ~ 3r162162 (17) 

A staggered grid system is adopted for the velocity compo- 
nents and SIMPLE algorithm is employed for the correction 
of pressure field to satisfy the continuity. 

3. RESULTS AND DISCUSSION 

The present discussion starts by considering the results 
corresponding to the box with Ax = 1, A r = 1 and Az= 2, with 
Pr  =0.71 and with the Rayleigh numbers of 104, 105 and 106. 
Then, the case, A ,  = 4 is included to investigate the conditions 
for the two-dimensional approximation by means of the 
penetration depth of the three-dimensional effect. 

Solutions are obtained with 22•215 mesh which is 

z x/ 

starting point(.075,.875,.075) 

(a) 
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max=0.38 rain=-0.54 
(c) 

Fig.  3 

x 

max= 19.27 
(b) 

Num I X 

max=-0.40 mm=-2.36 
(d) 

Streamline, velocity, and mean Nusselt number distribu- 
tion in Case I for Ra=104 and Az=2, (a) streamline, (b) 
V velocity on X - - Z  plane at Y=0.5, (c) W velocity on 
X--  Y plane at Z=0.05, (d) mean Nusselt number distri- 
bution on X - - Z  plane 
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star~g poim(0.5,0.5,0.1) starting point(0.5,0.5,0.8) 

(a) (b) 

max=68.29 max=-0.07 rain=-5.27 

(c) (d) 

Fig. 4 Streamline:, velocity, and mean Nusselt number distribu- 
tion in Ca~ I for Ra=lO ~ and Az=2, (a), (b) streamline, 
(c) V velocity on X - - Z  plane, (d) mean Nusselt number 
distribution on X - - Z  plane 

starting point(0.2,0.55,0.6) starting point(0.55,0.45,0.1) 

(a) X (b) 

max=252.20 max=-I,  mm=-lT.81 

(c) (d) 
Fig, 5 Streamline, velocity, and mean Nusselt number distribu- 

tion in Case I for Ra=10 ~ and A2=2, (a), (b) streamline, 
(c) V velocity on X - - Z  plane at Y =0.5, (d) mean Nusselt 
number distribution on X - - Z  plane 

considered to give reasonable compromise between accuracy 
and computing cost. 

In the figures, to draw a streamline, the velocity compo- 
nents at a prescribed starting point are found by interpolation 
from the values at the surrounding mesh points and incre- 
ments in the particle position are obtained by integration 
using a fourth-order Runge-Kutta method. The mean Nusselt 
number, Nu,,, is obtained by averaging the local Nusselt 
number over the length in the Y-direction. The local Nusselt 
number at a point in the box is defined as 

o c U T - k  ~ ;  

Nu~ = (k /L )  ( Th -- T~) " (18) 

[Case I ] 
Figures. 3, 4 and 5 show the streamlines, velocities and 

mean Nusselt nmnber distributions for the Rayleigh numbers 
of I0', 102 and 106 respectively. 

The interaction of a rotating roll with an end wall (front or 
rear wall) is often explained by a model of a rotating cylinder 
with a stationary end wall. The axial flow is directed away 
from the end wall and returned outward to the end wall as 
shown in Fig. 3(a). In this case, the rotational motion is driven 
by the buoyancy force due to the temperature difference 
between side walls instead of by the shearing with the rotat- 
ing wall of the cylinder. The spiral streamline pattern shown 
in Fig. 3(a) is a consequence of the superposition of the axial 
flow induced to satisfy the continuity on the crosssectional 
flow due to buoyancy. A relatively strong axial flow near the 
end wall is getting absorbed into the crosssectional flow as it 
moves into the depth and returns to within a small distance 
from the starting point to form a closed streamline. This 

three-dimensional flow can be produced by two mechanisms. 
The first is the kinematic interaction of the rotating fluid 
with the stationary plane and the second is thermal interac- 
tion resulting from axial temperature gradient. Detailed 
discussion may be found elsewhere( Mallinson et al., 1977). 

For the high Rayleigh numbers(Ra = t06, i06), the secondary 
rolls appear due to the convective distortion of the tempera- 
ture field. As the Rayleigh number increases, the thermal 
boundary layer is getting thinner and hence the temperature 
gradient in the vicinity of the wall is intensified to retain the 
viscous diffusion. This secondary flow induces the flow in the 
negative Z direction along the axis of this secondary flow. 
This flow is separated from the one in the positive Z direc- 
tion, which arises to make balance the centrifugal and pres- 
sure forces near the end wall(Fig. 4(a) and 4(b)). 

However, the end wall effect is ,confined to the vicinity of 
the wall. Due to the nonlinear increase in the strength of the 
crosssectional flow or maximum of V velocity as indicated in 
Fig. 3(b), 4(c) and 5(c), the viscous diffusion does not smear far 
into the central region and is confined to this thin layer. 

The mean Nusselt number variation may give a criterion 
whether the flow can be approximated as two dimensional, 
since this distribution should be uniform on X - - Z  plane in 
the case of two dimensional flow. It can be seen by the 
comparison of Fig. 3(d), 4(d) and 5(d), the end effect is con- 
fined to the vicinity of the end wall as the Rayleigh number 
increases. 

[Case II ] 
The aim of the present case is to predict the effect of the 

temperature disturbance imposed on the end wall. This dis- 
turbance may arise from conduction between the hot and cold 
side walls through the end wall. The profile may not be 
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z x 

starting point(.075,.875,.075) maxffi20.55 
(a) (b) 

Nun' I X 

max=0.79 minffi-0.91 max=-1, rain=-2.49 
(c) (d) 

Fig. 6 Streamline, velocity, and mean Nusselt number distribu- 
tion in Case II for Ra=10* and Az=2, (a) streamline, (b) 
V velocity on X- -~p lane  at Y=0.5, (c) W velocity on 
X - - Y  plane at Z=0.05, (d) mean Nusselt number 
distribution on X - - Z  plane 

exactly linear due to the convection from or to the end wall, 
however, it can be reasonably assumed to be linear. 

Figures. 6, 7 and 8 show the representative results accord- 
ing to the Rayleigh numbers. 

From fluid dynamics point of view, this flow may be 
modeled as the one in a rotating cylinder with a rotating end 
wall. In the case of no temperature disturbance, the axial 
velocity throughout the roll must be small due to the relative- 
ly small rates of rotation. When the temperature disturbance 
is introduced, large rotational flow is induced in the vicinity 
of the end wall and it reinforces the axial flow. 

In the case of steady flow, streamlines are identical to 
particle trajectories. In Fig. 6(a), the fluid particle started at 
(.075, .875, .075) is pushed away from the end wall in the initial 
rolling motion and it sustains axial directional motion. The 
rotational motion is quite reduced in this case compared to 
the particle motion shown in Fig. 3(a). V velocity distribution 
plotted in Fig. 6(b) shows that the viscous diffusion penetrates 
somewhat deeply into the core region at Ra= 10'. 

The skewed W velocity profile shown in Fig. 6(c) illus- 
trates the effect of the temperature disturbance. Due to the 
upward flow near the right half of the front wall, where the 
wall is hotter than the fluid, W velocity in the negative Z 
direction is retarded, and it is reversed near the left half. 

At Ra=105, the fluid particle started near the center of 
X - -  Y plane experiences several rotational motion before it 
returns (Fig. 7(a)), however, at Ra=106, the fluid particle 

starting poi~ta~O 4, 0.5, 0.2) starting polnt(~ 7, 0_35, 0.7) 

Fig. 7 

Nupn ~ X 

max=79.98 max=-l ,  rain=-6.19 

(c) (d) 

Streamline, velocity and mean Nusselt number distribu- 
tion in Case II for Ra=105 and Az=2, (a), (b) streamline, 
(c) V velocity on X - - Z  plane at Y =0.5, (d) mean Nusselt 
number distribution on X - - Z  plane 

Fig. 8 

smrdng point (0.2, 0.5, 0.7) s m x ~  point (0.55, 0.45, 0.25) 
(a) (b) 

z x 

max=228.93 max=0.05 min~-12.46 

(c) (d) 
Streamline, velocity and mean Nusselt number distribu- 
tion in Case II for Ra= 10 8 and Az--2, (a), (b) streamline, 
(c) V velocity on X - - Z  plane at Y=0.5, (d) mean Nusselt 
number distribution on X - - Z  plane 
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directly moves deeply towards the plane of symmetry without 
rotational motion. Since the boundary layer is much thinner 
at Ra=10 ~ than that at Ra=105 as shown in V velocity 
distributions plotted in Fig. 7(c) and 8(c), the primary 
rotational motion is circumscribed in the thin layer and the 
fluid particle passing through the very core region is not 
affected. Fig. 8(a) shows the formation of the secondary roll 
which is frequently seen in two-dimensional plots at the high 
Rayleigh numbers. The linear temperature disturbance is 
expected to act favorable for the two dimensionality since it 
induces a large rotational flow near the end wall as shown in 
Fig. 6(a). However, the mean Nusselt number distributions 
compared with those of Case I show that the three dimen- 
sional effect penetrates more into the Z direction. 

(Case HI] 
Case III is employed to investigate the sole effect of the 

temperature disturbance on the three dimensionality and the 
length of the box in the Z direction is elongated twice as long 
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z 

Distributions of Qx and Qr in the Z direction for Az=4, 
(a) Ra=10', (b) Ra=10 s, (c) Ra=106 

as before to allow enough penetration depth for the three 
dimensional effect. Volume flow rates, Qx and Qr, in a plane 
perpendicular to the Z axis is made of parameters to measure 
the penetration depth of the three dimensional effect, since 
these values should remain constant in the case of two 
dimensional flow. Qx and Qr are defined as 

fo AYI2 Qx = UdY at X=0.5,  (19) 

f 0  "$ 
Q r =  VdX at y Ay 2 �9 (20) 

Figure 9 shows Qx and Qr variations along the Z axis. 
As shown in the figure, the three dimensional effect pene. 
trates more deeply in Case II than in Case I .  Now the reason 
is obvious from the sole effect of temperature disturbance 
(Case HI) which shows strong three-dimensional behavior. For 
Ra=104, the three dimensionality of U velocity (or Qx) and 
V velocity (or Qr) is almost the same, but for the high 
Rayleigh numbers, the three dimensionality of U velocity is 
much stronger than that of V velocity. This is due to the 
rapid pumping of fluid along the Y direction in the thin 
boundary layer on the side walls, which dispels the effect of 
the end wall. 

4. CONCLUSION 

In this study, Leonard's QUICK scheme is reformulated to 
obtain stable solutions for the three-dimensional natural 
convective flow. Several important observations are noted 
and summarized blow. 

(1) A rotational flow induced by a temperature disturbance 
at the end wall reinforces the axial flow. 

(2) A temperature disturbance imposed on the end walls 
magnifies the three dimensional effect. 

(3) For the high Rayleigh numbers, three dimensionality of 
U velocity is stronger than that of V velocity. 
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